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Lecture 1

Accoarding dictionary: Percolation is the flow of a liquid through a porous medium.
For example, coffee machine and vulcanic rocks.

Definitions and notation

Z%. Each length one line segment between to points, are "open” with probabil-
ity P and "closed” with probability 1 — P.

PERCOLATION there exists infinite path of open edges (="bonds”)

Question: For what values of, P is percolation possible.

CRITICAL PROBABILITY: p. = inf {p € [0, 1] : P,(percolation) > 0}.

If p < p.thenP,(Perc) = 0.

Exercise show ifd = 1thenp. = 1.

d = 2 has already rich behaviour. Conjecture (Hammfrey): p. = 1/2ind = 2. (This
is also proven)

Graph G = (V, E) where V vertices/points, E connections/edges/bonds.

Z% denotes graph (Z%, {{u,v} € Z¢ x Z¢ : ||ju — v|| = 1}.

v € Vincident withe € Fife = uv for someu € V.

G C H whereG, H graphs if V(G) C V(H)and E(G) C E(H).

WALKinG: Vg, ..., Vist.V; € E(G)

PATH walk with all vertices distinct.

CLOSED wWALK walk V = V.

CYCLE/CIRCUIT closed walk with V, ..., V}, distinct.

CONNECTED COMPONENT=CLUSTER in (7 is maximal connected subgraph.
Where CONNECTED d path between any 2 points, and MAXIMALIf i add any vertex
not yet there, it fails to be connected.

{a e~ b} = {3 (open) path between a&b}

{a e~ 00} = {Joopath starting ata}

A«w Bif A,BCVst.3a € Abe Bs.t.a e~ b.

Q& b= {3a, bpath that stays inside set C'}.

A, = {-n,n}land A, = {2z € Z? : |z, Vn&Ti : |z| = n}.

We can describe percolation model via a sequence of coin flips.

(Xe: e € FE) 11.D.L Be(p). Here < means distributed like, IID means independent
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1, with probability p

identically distributed, Be(p) means that X = . .
0, with probability 1 — p

Fix enumerationsey, ey, ...of E(Z?) and X,,, X,,, .. .is IID that contains all informa-
tion on the model.

Q = {0,1}7Z" configuration space (X, : e € E(Z%)) € Q.

Event correspond to a set A C ()

Percolation function

PERCOLATION FUNCTION: §(p) := P,(0 e 00).

Lemma:

8(p) > 0 < P,(percolation) > 0

Proof part 1:

{0 e~ 00} C {percolation}. So#(p) = P(0 «~ c0) C P(percolation). SoP(percolation) =
0= 60(p) =0.

Proof part 2:

NoteVz € Z4, P(z e~ 00) = P(0 «~ 00) this is because there is nothing special about
the origin.

P(perc) :IP’<U {z e oo}) < ZIP’(,Z ars 00) = Z@(p)

z€Z4 2EZN €74

So if(p) = 0 = P(perc) = 0. <follows from countable SEE PROB NOTES
Therefore we can also say p. = inf{p : 6(p) > 0}.

Up-set, down-set, coupling

ACQ={0,1}*is an UP-SET (INCREASING)if for everya = (Ge)ecpzey € Aand

if
every e € E(Z%) the vector b = (be)ecE(zay € Awherebis defined by by = ;L]fflff 7e
iff=e

Example:

e Thereforeifa = (0,0,0,1,0,...)thenb = (0,0,1,1,0,...) (where we change a3 into
a 1) satisfy b € A.

e percolation 0 «~ oo and e open.

e Nonexample: Jexactly 2 infinity clusters. If those 2 clusters are just 1 closed
path from eachother away. Therefore if you turn that path one, you will get 1
cluster, so not 2 infinity clusters.
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A C Qis anDOWN-SET (DECREASING) EVENTif A%is up-set.

STANDARD INCREASING COUPLINGIIDU, : ¢ € E, U, < Unif]0, 1].

G, :=graph with vertex set R% edge set {e : U, < p}. Behaves just like original model
by parameter p.

Observep < ¢ = G, C G,.

Coupling of RVS X, Y is joint probability space for (X', Y")s.t. X < X", Y £ V",

Lemma:

Eis up-set, p — P,(E)is non-decreasing.

Proof: P,(E) =P(G,has E) <P(G,has E) = P,(E) wherep < g.

Gphas E'means that if F'is for example the event that 2 points are connected, then
that path between the two points, must be a path in G,,.

We use that F'is up-set by the <sign. The probability that event F first happens
isP(G, has E). But if p < ¢so we increase the probability there is even a higher prob-
ability that this event happens (since changing 0 to 1, is also possible, since up-set,
which will also be an element of E, so higher change that we will have G, has E).
Corollary:

p — 8(p),p — P,(percolation) are non-decreasing.

Proof: This is an immediate result since percolation is an up-set event.

Theorem:

p +— 6(p) strictly increasing on (p., 1)

Proof: Tutorial exercise.

Theorem:

Vp : Py(perc) € {0, 1}.

Proof: Herefore we can use Kolmogorov’s zero-one law: A sequence of indepen-
dent (not necessarily identical distributed) random variables, adn E'is a tail event,
thenP(E) € {0,1}. Tail event is an event that is invariant under changing the values
of finitely many variables. We see that our event is indeed a tail event, since

e if we have an infinite open path somewhere, and change some finite number of
edges from open to close or visa versa, then this can break the infinite original
path into finite paths. But there will be at least 1 infinite path.

e [f we have e a finite path, and open some edges from open to close or vica versa,
that will not produce an infinite path.

Hence percolation is invariant under changing the values of finitely many variables
hence a tail event.
To proof Kolmogorov’s zero-one law relies on to heavy material.
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Lecture 2

Lemma:

Ve > 0,devent F' that only depends on status of finitely many edges (all edges of A,,,for
somen)s.t. P(EFAF) < e.

Note: AAB = A\ BUB\ A.

Proof:

Ey := {Ay &~ 00}. Note that E = |J E} (we can prove this by subsets, and using

k

that By C Ey C .... Therefore we see that3k : |P(E) — P(Ey)| < €/2.
Bk = {Ax &~ AL, } wherek < m. (so we have a connection between Ay,and a point
outside A,;,). observe that this depends on a finite number of edges (namely Ag).
Therefore By, = () Ejm.Exercise Tutorial. Furthermore Ey,,, O Ej my1 O -... Hence

m>k
we get P(Ey) = nll_rgo P(Ekm). Sodm : |P(Ey) — P(Egm)| < e/2
Note that P(EAEy) = |P(E) — P(E)| < ¢/2and P(ELAE) ) = |P(Ex) — P(Egm)|
€/2. Therefore P(EAEy,,) < P(EAEL) + P(EyAE},,). This is because EAE) ,
EAE, U E,AEg .
Hence P(EAE),,) < €so proven by chosing F' = E ,, for certain k, m.
LIMITS CAN WORK SINCE UNION AND INTERSECTION, SEE PROBABILITY
THEORY

IQRVA

T : Z* — Z%is TRANSLATIONf T'(2) = 2z + cforc € Z.

(So(z1,...,24) = (z1+ 1,00y 2q + ¢q).

Example: e € F(Z%) corresponds toT'(e). So ife = uvthenT(e) = T'(u)T(v).

Example: Event A C {0, 1}2% corresponds to T(A) := {T € A} s.t. when (X, )eep corresponds
to original edge status, then Y, = Xp-1(e). So if Ais the event that e is open, where e is
the edge between (0,0) and (1,0) and T'(z) = z + (1,1) then T(A) = {T~!(e) open},so
the event that the edge between {—1, —1)and (0, —1)is open.

Note: P(T'(A)) = P(A).

A TRANSLATION INVERSEif A = T'(A) for all translations 7.

Example: {all edge open}, {percolation}.

Non-example: {eis open}, {0 «~ oo}.

= {percolation}, ' = {as in lemma}. Fdepends onA,,. TakeT : z — z +
(1000m, 0, ...,0). F,T(F)are independent. P(FNT(F)) =P(F)P(T(F)) = P(F)>.
EA(FNT(F)) C EAFUEAT(F) = EAFUT(E)AT(F). Note that T(E)NT(F) =
T(EAF).

Therefore P(EA(T NT(F)) < 2P(EAF) < 2e.
Therefore |[P(E)(E) — P(F)?| = |P(E) —P(FNT(F))| < P(EA(FNT(F)) < 2e.
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IP(E)? - P(F)? = |(P(E) — P(F))(P(E) + P(F))| < 2[P(E) — P(F)| < 2e.
Therefore P(E) — P(E)?| < |P(E) — P(F)?| + |P(F)? — P(E)?| < 4e.

Since eto0, we have in fact P(E) = P(FE)%.

Theorem:

E = {percolation} ThenP,(E) € {0,1}.

Proof:

By above reasoning, we see that for E = {percolation} we have P(F) = P(F)? which
is only possible if P(E) € {0,1}.

pe = inf{p : P,(percolation) > 0} = inf{p : P,(percolation) = 1}, furthermorep, =
sup{p : P,(percolation) = 0} = sup{p : 0(p) = 0} = inf{p: 6(p) > 0}

For0 < p < p.we see that P, (percolation) = 0. Forp, < p < 1we see that P,(percolation) =
1. Forp = p. it is still unknown what happends. Observe discontinuous.

Now we can ask ourself isf(p) continuous? Note that ifPP, (percolation) = 1 =
0(p.) > 0 = discontinuous (since for 0 < p < p.we see that #(p) = 0.
Theorem:

p — 0(p) is continuous from the right ind > 1,i.e., lim6(q) = 6(p),Vp € (0,1).

NP
Proof:
Consider standard increasing coupling. E, = {in G, 0 «~ oo}
Claim:
E, = E,
7>p
Proof of claim:

C obvious since if¢ > pthen G, O G,,.

C Exercise P;, P,,...infinite paths starting at origin in Z?, Joo path PinZ%s.t. Ve €
E(p),3n; < ng < ...withe € E(F,,),Vi.

Want to show E, O () E,. Fixq,q,... > ps.t.q; — p. Suppose () E,, holds,
9>p i=1
then Jinfinite paths Piin G, starting at origin.

Exercise: oo path P starting at origin s.t. each edge in oo many G, .
Fixe € E(P),ni,ng,...;e € Gy, , Vi, i.e.U. < gy, Vi. soU, <limg,, =psoe €
g 100

G)p, Ve € E(p). Therefore Pis in G,,.
Henee 0(p) = P(E,) = B(() ;) = lim B(E,) = 0(a)
a\p

q>p
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Theorem:
ind = 2then% <pe. < %
Proof:
For% < P.enough to show g(p) = 0,Vp < %

Vn
{origin «~ oo} C {origin «~ AS} C {3path length n starting at origin}.
P, = {all paths starting at origin, lengthn}. Therefore

O(p) < Z P,{all edges of popen}

PEPn

Observe that |P,| < 4 -3""'. This is because from the origin you have 4 options.
After that, you have 3 options left since you can not go back (since otherwise not a
path). Hence we see that

O(p) <4-3"1-p' = -(3p)" == 0

Forp, < %WG want to show that 6(p) > 0,Vp > %

If cluster of origin is finite, then it has a contour, notation C'(or.). Goes from inside
a square to adjecent square crossing only closed edges, returning to starting point
encloses origin.

1 —6(p) = P,(origin ¢ oo0) < > P(all edges ofC closed)
contours enclosing origin

=5 S |C)(1=p)* = > n-3""1(1—p)". Therefore we see that 1—60(p) < coiffp >

n>4 CeCy n>4
%. Therefore ifp < 1then1 — 6 < 1 hencef > 0.

Observe that ifp ~ %then the sum can be way larger. Therefore we have to re-
strict it to a specific length:

Fixngs.t. >, n3" 11 —p)" < 3. e1,...,en, € E(Z%) are first ngedges on posi-
n>ng

tive z— axis withe; = (i — 1,0), (¢,0).

Let A := {0 ¢~ oo} N{ey, ..., en,,0pen} and

D,, := contours that enclose (0,0), (1,0),. .., (ng,0) of lengthn

B(A) € ZfDusny| - (1 =p)"p™ <p™ 3 3" (1—p)" <p™ -5,
n n>no

B :={0 «~ oo} N{ey,..., ey open}.

Therefore P(A) + P(B) = P(eq, ..., e, open) = p"o.

Therefore P(B) = p™ — p(A) > p™ /2 > 0.

MISSED
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Lecture 3

Corollary:

pe < 5,¥d > 2.

Dual graph

We proved that p. > 57— in the lecture. In fact p. = (1+04(1)) X 55. Here o4(1) means
that Ve, ddy; p. € (12;;, %)

PLANAR GRAPH graph G = (V, E) that can be drawn in R?.

PLANE GRAPH planar and fixed drawing.

Planar graph has FACES:=connected regions of R* \ drawing

DuAL GRAPH place vertex inside each face of plane graph, connect these iff faces meet
in an edge.

Notation: G* = Dual of G.

Example: (So in the integer grid, you get for example a shifted graph in fact). For
eache € E(Z?%),3le* € E((Z*)*) that intersects it.

Define COUPLING between percolation on Z? and (Z2)* by e* open iffeclosed. There-
foreP(e* open) = 1 — P(eopen) = 1 — p.

Crossing probability /event

rectangle:R = {a,...,b} x {c,...,d}.

HORIZONTAL CROSSING: H(R) = {{a} x {c,d} <% {b} x {c,d}}
VERTICAL CROSSING: V(R) = {{a,b} x {c} <% {a,b} x {d}}.

Ris an (n + 1) x nrectangle, say {0,...,n} x {1,...,n}, then R*is R but rotated.
Exercise: P(H(R)) + P(H(R*)) =1

1, this is true Vn.
where Ris a square (son x n) (Let’s denote this by B)

If p =  then 2P(H (R))
Note that P,(H(R)) >

N

Harris’Lemma

H(R),V(R)eample of up-sets depending only on finite edges.

Lemma:
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A, B C {0,1}"up-sets (n € N,p € [0, 1]),thenP,(AN B) > P,(A) - P,(B).

Note: P,(A) = P,((Xy,...,X,) € A)where X, 1.i.d. Be(p).

Note: Also FKG inequality

Proof:

n =1, then A, Bare(), {1},{0,1}. We see that this is in fact trivial.

IH: assume true forn — 1. Fix A, B C {0, 1}".

Let A; = {(z1,...,2,1) € {0, 1} Y(21,...,2,_1,i) € A} withi € {0, 1} Define B; similair.
Then Ay, By are upsets. Similair Ay C Ay, By C B;. Therefore

(P(A1) — P(Ao)) (P(B1) — P(Bo)) = 0
P(Ag)P(By) + P(A1)P(B1) > P(Ag)P(By) + P(A1)PP(By)
(1 —p)P(Ag) + pP(A;) = P(A)
(1 =p)P(Bo) + pP(By) = P(B)

Therefore by induction step, we see that

P(ANB) > (1 —p)P(Ay)P(By) + pP(A1)P(By)
(Ao)P(Bo) + (1 — p)pP(Ag)P(By)
)P(B1) + (1 — p)pP(A1)P(B1)
(1—p)*P(Ag)P(Bo) + p°P(A1)P(By)
(1 = p)p(P(Ag)P(By) + P(A;)P(By)
(( )P

)
1 —p)P(Ag) + pP(A1)) (1 — p)P(Bo) + pP(B1))
)

Due to this lemma, we see that P(H(R) NV (R*)) > P(H(R))P(V(R*)).

Aupset, B downset, thenP(AN B) < P(A)P(B).
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MAKE SOME SENSE FROM THIS BELOW

Russo-Seymour-Welsh theorem

Va > 0,3c(a) > 0;PL(H(R)) > c(a),¥n,¥[n - a] X nrectangle R.

Proof: ’

Enough to show for your favouritea > 1. Since if true for athen also true for0 <
f < a. (take for example ¢(5) = c(«)).

Foroo < 1, take () = 1.
If V(R) holds,Ja left most vertical crossing. Since R finite rectangle, then finitely

many possibilities hence there must be at least a left one.

SEE PLOT NOTES

P(H(R, U Ry)) > P(H(R,) N H(Ry) NV (Ry N Ry))

Exercise: Fix R conditional on V(R),let I" be left most vertical crossing. I'is undefined
if V(R) does not hold. Show that {I" = v} depends only on edges to the left of, for
all fixed vertical crossing of R.
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Lecture 4

Some proof

FOTO 1

a = % With Q an x nsquare, Ra2n x 2nsquare s.t. ) C R.

E =V(Q) N {3path inside R from a vertical crossing in @ to right boundary of R}
FOTO 2

['is left most vertical crossing of (). ~ vertical crossing of (),and v* mirror image re-
flected in the line with arrow. Fix~ (non-random). E, = Jpath from~to the right
side of R.

FOTO 3

Hence IP’%(E7 UE;) > P%(H(R)) > 1. Therefore P(E,) + P(E,-) > P(E, U E,+). By
symmetry, P(E,) + P(E,-) = 2P(E,) hence P(E,) > 1

E! = {Right of R connected to~y with path not corssingy*}

P(E) > Y P(E,AT =) = S P(E,l = )P = 7)

Y

Note that EZ,I" = v depends on disjoint sets of edges. Therefore

1
8

e~ =
N | —

B> i;mr =) =P(V(Q) 2

Now take F'to be a rectangle s.t. 2 squares R, R’ overlap.

F = H(Q)NEN{Eholds for R'}. By Harris Lemma, we see that P(F') > P(H(Q))P(E)* >
5 (%)2 = z. This is for evenn. For oddn, easy to reduce P(H(R)) > c(a) for
some C'(a) > 0,V[2n] x nrectangle,by looking atn — 1, do the same and then taking

the third power of 518.
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Harris’ Theorem

Ind = 2we have#(1/2) = 0.
Corollary:
Pe > 3
Zhang’s argument
Argument also true in dual (p = %)
P(.) > c(3) >0
Proof:
Aq, Ay, .. .ested sequences ... of ... size. Aj,...,A;inside inner region of A; ;.
Each A; made of 4 3n; xn; squares as before. Therefore P(0 «~ 00) < P(every A; does not have...) =
P (ﬂ A; does not...) = [1(A; does not) < J](1 —¢(3)") =0
i i=1

T
Theorem:

Ind =2,V € [0, 1],P,(3 > 2distinct oo clusters) = 0.

Proof:

p < %then we are done, since no clusters since p, = %

Fixp > fand 21, zo8.t. F., ., = {21 e~ 00} N {29 e 00} N {21 ¥ 25}. Start zhang
from a larg size s.t. z1, 2o inside first annulus.

Therefore by Shang’s argument [Py /»(3 certain open surrounding z;&z,) = 1.
Therefore we see that P,(3 certain open surrounding z;&25) = 1.

Therefore P(F') < P(no op en circuit surrounding zy, 25 exists) = 0

P(3 > 2 distinct oo components) = P ( U Fum | < D P(FL ) =0

z1#£29 21,22
A PERCOLATION MODEL ~ A random subset of £(Z%).
1 INDEPENDENT PERCOLATION: if {€1, open}, ..., {ex, open} are independent,Vey, . . ., e, (Vk) that
do not share endpoints.
Example:
Vv € Z4, is red with probability r and blue with 1 —r. Open edges="monochromatic”
ones (monochromatic is 1 colour). SoP(eopen) = r? + (1 — r)? = p. Edges not inde-
pendent. We see this by taking a 4 cycle. If the edgeseq, eq, €3 are open then ey is also
open. SoP(eqopenley, ey, e30pen) = 1 # punlessr = lorr = 0. But we see that this
is 1-independent. Each edge depends on 2 coins ifeq, ..., e, do not share endpoints,
sets of coins disjoint.
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Lemma:
Jdp; < 1s.t. in any l-independent percolation model onZ? if P(copen) > p;,Ve €
E(Z?), then P(Joo cluster) > 0.
Proof:

P(0 ¢ 00) < Z P(all edges of C closed) =< Z (1—p)F
c

C circuit surrounding e
< Z n3" 1 ( 1 — pl)
n>1
< 1liff p; close to 1
P(0 e~ 00) > 0

Note that Y 2™ = A=for —1 < 2 < 1. Hence }_ na"' = (ﬁf
n>0 n>1
Lemma:
dP2 < 1s.t. the p € [0,1], € Rares.t.IP,(H) > py thenf(p) > 0, with B of size 3n x n.
Proof:

Make a coupling with a 1-independent percolation modele = (i,5)(i + 1, ). Let
R.={(2i—n)(n+1),....2(i+ 1)n} x{(2j —)n+1,...,2n5}

eopen if forihorizontal H(R) N V(...). Similarly ife vertical, P(eopen) > p*. As-
sume *xpo suff. large to be discussed. By definition of e open i if doo path in 1-indepedent
model = Joo path in original.

P, (Joo cluster in original) > P(Joo clusters in 1-indep.) > 0where last if p3 > p; (in
previous lemma). So can takep, = /p; < 1.
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Lecture 5

We want to show that p. = %ind = 2. By Harris’s theorem. Forp, < %enough. That
isVp > 5 we haveP,[H(1,...,3n} x {1,...,n})] 7% 1.

{epivotal for H(R)} = changing status of (only) e changes whether H(R) occurs.
Exercise:

If e is pivotal, then 3 paths from end pointsof e* (open in dual) to top and bottom of R.

A C {0,1}". ConsiderP,(A) = P(X;,...,X,) € A)with X;,..., X, iidBe(p). Co-
ordinate i pivotal for Aif (Xq,..., X; 1,1, X;411,...,X,) € A) and

(X1, Xio1,0, Xi41,..., X)) € A(or vica versa)

Inf;(A) = P(iis pivital) here Infis influence.

Theorem: Margulis-Russo Formula
A C {0,1}" up-set. Then

d n
d—pIP’p(A) = ; Inf;(A)

Proof:
Consider situation where X; ~ Be(p;) (still independent). Therefore

zeA j=1

Note forn < oo, we see polynomial inpy,...,p,. Therefore %P(A) exists. Hence

P1==Pn=p
Therefore
_ Zj 1-x; ) Zj o N\l
Ppy,..pn(A) = § Hpj (I—pj) "+ § Di Hpj (L—pj) "
(1, @i —1,@i41,20)€{0,1} jFi (1,0 @i—1,@i41,20)€{0,1} 70
(x1505%i—1,0,2541,2n)EA (@1,005i—1,0,T441,%n)EA
(x15005mi—1,1,2541,2n)EA (1,0 5Ti—1,1,2441,2n)EA

We see that this is an equality, since Ais an upset. Hence

0 z; L
8_p-IEDp1 ..... pa(A) = > [[r(—py)—

(1, @i —1,@i41,20)€{0,1} jFi
(®15005®i—1,0,Ti 41,00 ) EA
(X1, Ti—1,1,@541,2n)EA

= P(iis pivotal (A IS UP-SET) = Inf;(A)
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Proposition:
Vp > 1, lim P,(H({1,...,3n} x {1,...,n})) = 1.
n—0o0
Proof:
From tutorial exerciseP;/5(0 «~ Af) < n~¢for somec > 0.

€ > O,% < p < 1. Picknlarge thd

U(q):=P,(H({1,...,3n} x {1,...,n})) withq € [0, 1]

Assume ¥(p) < 1—e. We know Vg > 1 that ¥(g) > ¢(3) > ethereforee < ¥(q) < 1—¢,
forall% <q<p.

U'(q) ZZIHfiZC'\If(q)(l—lI/(q)) Xln< 1 )

max [P, (e pivotal)

S ce1—0)l !
c€(1—€)ln
e ‘ max P, (e pivotal)

Ifeivotal, then top and bottom each have path in dual to endpoints ofe*. We call
these end points u* and v*. Therefore

P(e pivotal) < P(u" ev» u” + AZa_in dual) + P(0" e 0" + A% in dual)
= 9P, _, (Q s A7> < 2P, <Q s ACL)

1000 1000

<9 ( i )_C
=< \To00

Therefore
U'(q) > ¢+ eln(1 — €) (cIn(n) + constant)

Therefore ¥'(q) — ocowhennto infinity. WLOG, ns.t. U'(n) > kforklarge to be
discussed. Since this is independent of ¢ we see that this holds V% <q<np.
Therefore

p

V) = V(5 + [ Vg > Ko~ 5)>1

[NIE

where last choice of K. This can not be, since U(p) ,is a probability. Therefore ¥(p) <
1 — emust be false.
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Talagrand’s inequality
Juniversal constant s.t.¥n € N,V0 < p < 1,VA C {0, 1}" we have

ZInf > cP(1-P(A)) x In (W)

Proof:

First show forp = % deduce then Vp. Note that A C {0, 1}" corresponds to function f :
{£1}" — {£1}. By setting

+1if (2, ) e 4

—1 otherwise

f(a;lw‘wxn) = {
V =A{f:{£1}" — R}is a vector space,take as origin f : {£1}" — 0

Note that each vector has 2" points in {£1}". Store f(z) for each of these. Sodim(V') =

lifx =
2" Basis: f,(z) = Hr=y withy € {£1}". Therefore f,(z) = 1,,.

0 otherwise

Pick inner product (f,g) := Ef(z)g(z) where X = (z1,...,2,)idP(X; = —1) =

Let X = (21,...,2,) € R", S C [n], then X¥ = [] 2;. (Soz"3} = x; - 3. Further-
iesS

more X? = 1.

Lemma:

X*%: 8 C [n]form orthonormal basis for V. We have2" ... of ... pickT,S C [n]. There-
fore

0ifS#T

52Ty =E 2 X;|=E X; = E[X.

@) =B ]] =7 ]I 11 11 ST
€SNT IESAT 1ESAT 1ESAT

Note that E[X;] = —1-2+1-1=0.

Therefore f € V can be written as

F= fls)-a°
Cln]

SC
We call this Fourier-Walsh coefficient (decoposition).
By Plancherel’s identity, we see that
=2 f)- (s

SCln]
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Proof:

(o) = < S o) ot S o). > S o))
TC[n] S T

By Parseval’s identity (f, f) = >_ jﬁ(s)2 = 1if fis+1 valued.

Write Ef = Ef(x1,...,%,) andiarf =var(f(xy,...,1,)) = Ef* — (Ef)?

Ef =3 f(s)Ez* = f(0)

Var(f)sz (F, /Y= F(0)2 =3 f(s)2. if fis 1 valued, then we have Var(f) = 1— f(0)2.
So if f is +1 valued, then\faiqu) =1—(E(f)?’=1-(1-P(f=1)—-P(f =-1))2 =

1
AP(f = 1) — 4P(f = 1) = 4B(f = 1)(1 - B(f = 1)).
Compare this to talagrand.
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Lecture 6

Operators

V= {f: {£1}* > R} with (f, g) = Ef(X)g(X) where X = (Xi,..., X,)iid Unif({1});
Infz(f) = ]P)(f(Xl, E 7Xz'—17 1, Xi+17 e 7Xn) 7A f(X17 P 7Xz'—17 _17Xi+17 Ce ,Xn>)
r € {+1}"thenz" = (Xq,..., Xi 1,9y, Xit1,...,1n)

f= 3 fls)-af

5Cin)

i th differential operation f — D;f with (D;f)(z) = 3

i th expectation operation f — E; f with (E; f)(z) = 5 (f(z"!) + f(a™7) = Ef(x1, ..., X;-1, X, Xy
Unif({£1})

Exercise:

Show that f = x;D;f + E;f.

Note D;, E; are linear operators, so D;(Af + gu) = AD;(f) + uD;(g), sim. for E,.

Lemma:

Dif =3 f(s) - 25\ = 3 f(s)2®
S>i SFi
Proof:
Dif = DY fls)® = 37 f(5) Dyl
s S
Oifi ¢ S

S S\i—=+1 _ (.8\i——1) _
D=5 (@7 =) {xsw} iti e s

Dif =3 fa50

531

. . 0ifi € S A
Eil‘s _ ((xS)zal + (:Cs)lﬁfl) _ {xs lzfzeg 5 _ Zf(5>xs
SFi

N | =

Note: f — {£1}then
f i—+1) i——1
D;f = Oif f( ) J ) . Therefore
+1 otherwise

Infy(f) = E|Dif| = B(D;f)* = (Dif, Dif) = Zf

S3i

Somi(f) = D03 fe = 30D A7 = D ISIf(s)

E-ET) €S
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Example:
[ {£1}" — {£1}is non-decreasing in all coordinates,then Inf;(f) = f({i})

re{£1}", -1 <p<1,thenY = (Yi,...,Y,)is p— CORRELATED TO X if Y; independent,

X; with prop 1+”

—X; with prop —23
Example:
If p > O0then Y; = X, with probability ,p and resampled +1 with probability % otherwise.

andY; = Notation: Y ~ N,(X).

NOISE OPERATOR f — T, f given by (T,,f)(z) = Eyn,@)f(Y), note: linear
NOISE STABILITY Stab,(f) = (f,1,f) = E.Eyn,x)f(2)f(y)
observation:

Stab,(f) = P(f(x) = f(y)) = P(f(x) # f(y)) = 1 = 2P(f(2) # f(y)).

The more closer Stab,(f)is to 1, the smaller the error.

Lemma: R
T,f = > ol f(s)a®
5
Proof:
T = 3 AT (6.1)
T, z” = = Ey.n, x)Y H]EYNNP(J:
€S
1+ 1—
EYNNP(I)Y;' = ( 9 pl’l + 9 P - ZL’Z> = pPx;
1,05 = [L o = o [ o
i€S €S
L,f =3 f(s)p T = 3 F(s)ola®
S €S s
Corollary:
Stab,(f) = (. T,f) = Zp'SI fs
) " Stab,(D;f) = Z|5|p\sl—1 f(s)
Exercise:

(f,T,9) = (T,f,9)andT,(T.(f)) = Tporf. (we can do by Parseval and using (6.1).)
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P-norm

P-NORM ”pr = {/E‘f‘p forp > 0.
We see that E* > (Ef?)2 = || f|la > || fl]2-

T CONTRACTIONI || T f ||, < || fllp, V-

Theorem (2,4) Hupercontractivity:

4
1Ty vafla < IIflie B (T f) < (Ef2)?
Proof:
Induction onn. f: {+1}" — R. Basen = 0so function does not depend on any con-
stants, hence f is constant. Therefore T’ e f = f, therefore we see that we get equality

(Eg?)%. LetT = T},d = D,f,e = E,f, f = xpd + eandTf = T(z, - d) + Te.
3
Therefore

4
Now assume holds for any g that depends on less then n coordinates. SolE (T% g) <
3

Tf=Tx, -Td+Te= %and—i-Te
4 3
E(Tf)* = (%) E (z) (Td)* + 4 (%) Ex3 (Td)*Te

i) Ex?(Td)?*(Te)* + 4%1@%(%)(1”@)3 + E(Te)*

3
1 ! 4 1 ? 2 2 4
(ﬁ) ETd" + 6 (%> E(Td)*(Te)* + E(Te)
< E(Td)* + 2E(Td)(Te)* + E(Te)*

N

+6

< E(Td)* + 2¢/E(Td)*\/E(Te)* + E(Te)*

= E(Td)* + 2 <\4/]E(Td)4>2 ( : E(Te)4>2 + E(Te)*
< E(Td) +2 (\/IE_d2>2 (@)2 +E(Te)*
E(Td)* + 2Ed*Ee® + E(Te)*

~

H
< (Ed®)? + 2Ed°Ee” + (Ee?)?

— (Ed® + Ee?)’ (6.2)
E(f?*) =E ((zod + €)*) = E(z2d” + 2z,de + €*) = E(e®) + E(d%)

Note that from (6.2) we have E(T f)* < (E(d?) + E(e?))?, from last line E(d?)+E(e2) =
E(f).
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CaucHY SCHWARZ: (f,g) < || fllz - | f]l2-
Proof: Exercise

Holder’s inequality:
(F.9) = I lplgllyif 2 + 2 = 1,withq, p > 0.

Theorem (4/3,2) Hypercontractivity:
7 flla < 11715

Proof:
T, f2={T, £.T A R T.T Y T
ITo fI5 = (T3 T3 1) = (£ T2 Ta f) < Wlaga- |7 T S, < 1 hss |7
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Lecture 7

Corollary:
Iff:{£1}" — {-1,0,1} then

Stabs f = (f, T3 f) < (E(f))*"*

Note that

L7.1 L7.2
(f, T2 f) & <f,Tw§ongof> = (Ty,5f, Tyysf) = 1Ty a1l

<1128 (LA = (B()™?

L7.1 This follows from T, f = S plS! ()"
L7.2follows from (T, , ) = 32 5(s)0 f(s) = (1, T,g)
S
After that we use the (4/3, 2) hypercontracitivity, and f — {—1,0,1}.

Corollary:
Vf: {£1}" — {£1} then Stab,;5(D;f) < Infi(f)3/2.
Proof:
1
(sz)(:lj) -5 (f(zla sy Ti—1, 17$i+17 s 7:1771,) - f(xb sy Ti—1, _17$i+1a s 7$n))
2
E[D; f| = Inf; f
MISSED SOMETHING
Talagrand (p = 0.5 case
de > 0s.t.Vn,Vf : {£1}" — {£1} then
S () 2 evar(f) dn |
: nf;(f) > c¢- var n max Inf, (/)
Proof:
I:=>"Inf;(f), Let M > 0tbd.
F( N2 « aM 1\ # 2 _ oM
S fer s Y (5)  ISIFs? =3 S stb, (D)
1<|s|<M 15|21 i
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This last equality follows from

Dif =) f(8)a*M

S3i

1\ 51 A

Continuing we get

Z f(s)? < 3MZInfi(f)3/2 < 3M. /miaxlnfz-f . Zlnf,»(f) =M. /mzaxlnfif i

1<|s|<M

Now for the other part

Now use that

~ 2 LT3 1
varf = Z f(3)2 < <3M /max Inf; I + —) v
i m

L7.3follows from earlier results.

We’ve chosen M s.t. M3M = —-— . We can do this, since , /7> > 0, LHS is contin-
/mzaxlnfi

uous, lim m3™ = 0and lim = oo.
MN\0 m—00

Therefore we get 3 /rnzaxlnfi = 1. SoVar(f) < 21, ie.
1> %Var( f) (7.1)

Left to show: m > const In (_maxlmf)

M 1 1 1 1
Note that 6 > ey therefore M > logg ( \/maxlnfi) = 0@ In ( \/maxlnfi)

Substituting this into (7.1) we get what we want.
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Corollary:
Now we want: 3¢ > 0s.t.Vn,VA C {0,1}",V0 < p < 1 we have

1
Zlnf ) 2 P(4) (1= P(4))In \/maxTnf(4)

Proof:

SKETCH OF PROOF Letazy,...,z, € {£1}iid, withP(x; = £1) = p, with (f,g) =
Ef(z)g(x).
The problem is that (2%, 27) # lgs_ryifp # 2. Observe that (X°, X7) =
E(:C2)SOT . X ST — ]E(XS(ST) — H E(Xl) — (2p _ 1)|SAT|.

iESAT
Therefore we have to find a different basis:
Exercise
Ys(z) = ] o(x;) with ¢(1 ﬂ/ E,¢(—1) = —,/7%- Show that this is an

€S
orthogonal basis.

If we use this, we can follow the proof above, but for the orth. basis ¢g(x) instead
of 2% to complete the proof.

proof Note that it is enough to show for pdyadic radionals. Sop = %With k,l €
N U {0}.
Note that dyadic rationals are dense in [0, 1]. We see that p — P,(A)andp —

Inf;(A) are continuous in P for fixed n, A.
Thereforep — > inf, p — max Inf, p — P(A)(1 — P(A)).
Fixpwithpy, ps, . ..dyad. rat. s.t.p, — p. Therefore

m— 00

= P,(A4) (1 —P,(4)) In <m>

7

1
(p) — m > — -
g Inf lim Inf? lim cP,,, (A)(1—-P,, (A))n (max Infpm(A))

i

Therefore it is indeed enough to show for p dyadic rationals, which we will do
now:
Letp = k/2, Y1, ..., Y be IID Be(1/2).

l
1 2 9l 1
U:=>"27'Y; £ Uni <{o§2—L 5 })

Jj=1
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This follows since (Y7,...,Y.) ~ Unif ({0, 1}l), and last part in align, is in bi-
jection with Unif ({0, 1}')

X = luep) L Be(p). This is sinceP(X = 1) = P(U € {0, 4,...,%:}). Note

» ol s ol
that we have k possiblities, since distribution of U we see that we have probabil-
ity for each element of U is 1 therefore P(X = 1) = & = p.

Start with A C {0,1}"V;;;1 <i<n,1 < j < liidBe(0.5).

7-j’
X:=1, < Be(p).
{; Y ;279 <p}
Note: B C {0,1}". Bholds wrtY;; if Aholds wrt X, ..., X,,.
Therefore talagrand forp = %we get

1
max Inf; ;(B)

> Infi;(B) > cP(A)(1 - P(A))In
i by
Inf;;(B)ifY;; has influence then
e X, has influence (on A)
e Flipping Y;; changes whether X; = > Y;,27" < p.
t

Whether X; pivotal does not depend on X; but onYy ;i # j'. Also depends
whether Y;; is pivotal for X; = 1 depends only onY; ; (i # j'). Therefore

Inf;;(B) = P(X; pivotal for A) - P(Y;; pivotal for X; = 1)
= Inf;(A) x P(Y;; pivotal for X;) < Inf;(A)

Therefore we get

3ty (5) > cP(A)(1 = P(A)) I (W)

Now note that
P(Y;; pivotal for X;) <P (X; € [p—277,p+277))
Left as exercise that P(Y; pivotal for X;) < 277
Therefore we see that Y Inf; ;(B) < Y Inf;(A) - 277 < 23 Inf;(A). Therefore

1,5 1,J
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we get,

1
23 Infi(4) > cP(A)(1 — P(4)) In (m)

) 1
D2 nfi(4) 2 CB(A)(1 ~B(A) In (m—u)
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Lecture 8

Recall from exercise: Vp € {0,1,2,...} U {oc}

P(Jexactly k oo clusters) = 1

Let N = # distict infinite clusters

Lemma:

P(k € {0,1,00}) = 1.

Proof:

Suppose P(N = k) = 1for some2 < k < 0o

E,, = P(N = k&each co cluster hits A,,). ThereforeJ E,, = {N = k}.

SolimP(e,) = P(N = k) = 1. Pickns.t.P(E,) > 1.
Experiment:

1. Generate model
2. Resample E(A,,)

Outcome: original model.

F :={FE, holds in stage 1) and E(A,,) all open in stage2)}. Therefore P(F) = P(FE,,) -
pPhn) > 0.

Now note if F'happens, there is exactly 1 infinite path. This is because every edge
in A,, is open, so connects all infinite paths to 1 infinite paths.

Note that P(N = 1) > P(F) > 0but this is contradiction, since we saidP(N = k) =
Lfor allk € [2,00). Hence we proved the lemma.

2 iS TRIFURCATION POINT if z has exactly 3 neighbours, and if we remove z, it’s cluster
splits into 3 oo clusters.
Note that P(z tri) = Z(0tri) =: ¢ > 0.

Lemma:

IfP(N = c0) = 1 then P(0tri. point) > 0.

Proof:

E,, = A, hits at least 3 infinite clusters.

P(E,) 22> 1. since|J E, = {Jat least 3 clusters}

n

Therefore fixns.t.P(E,) > % If £, holds, we can find z1, 29, 23 on OA,, distinct s.t.

Z; & ooViand z; ¢ z;, Vi # 7.

F = {E, holds in stage 1), fix 21, 29, 23 in stage 3, 33 disjoint paths between 0&z1/25/23in A,
and all other edges in A, are closed}.

Therefore P(F) = P(E,)P(F|E,) > P(E,) x min (p,1 — p)*™) > 0
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P(0trif point) > P(F) > 0.
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Fixnlarge TBD.
X :={z€A,:ztriffand) = {z € OA,, : 2 Lo, X'}

X =Y = D150 BX) = E (5 Ly ) = alt
z€A,

Therefore P (X > g|\,|) > 0.

Claim: X <Y (Deterministially)

GG := open graph inside A,,.

G O F =made by repeating if 3cycle, delete some edges on it.

F'is a spanning forest, forest=acyclic graph=where every component is a tree.

H C F by repeating if 3leaf (point of order 1) not inY remove it and incident edge.
NoteY C V(H). So ifz € Xis tri point, then 3y, y2,y3 € Y pathspy, pa, ps edges
disjoints that connect z to yy, yo, ys3.

Also true in G and F', since you can never remove edges incident with z, since z not
any cycle otherwise not trif. points.

Note that V points on py, po, p3 has degree at least 2 or € ).

Exercise:

Show that F forest, then |leaves| > |#vertices of deg > 3|.

Note that |A,| = (2n + 1)¢ = Q(n?), and |0A, | = O(n®™1).

SoY < |0A,|. With positive probability, | X| > ¢|\,|, which is true for alln.

But we need X < Y so we need g|A,,| < [OA,]|

So we have ¢ < |(\9/¢Ln|| 272 0. Which implies ¢ = 0, but we see taht P(N = o0) = 1 =

q>0soP(N =o0) =0.

Theorem:
Vd > 1,¥0 < p < 1,P(3 > 2distinct oo open clusters) = 0.
Proof by Burton and Kean (deduced above)

We see by previous lecture that lim 6(q) = 6(p).

NP
Theorem:
Vd,p — 0(p) is continuous on [0, 1] \ {p.}.
Proof:

On [0, p.) trivial. Remains to show that li}n 0(q) = 0(p),¥p € (pe, 1].
a/'p

Fixp > p.withp. < ¢1 < g2 < ... < pwithg, — p. By AKW Vnwith probabil-
ity Jinfinite cluster C),. Use standard increasing coupling. So G, C Gy, € ... C G,
SO Opi C Cpi-l—l'

6(p) — lim#(q,) =limP(0 € C,) —P(0 € C,,) =1limP(0 € C, \ Cy,)
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Note that (0 € C, \ C,,) 2 (0 € C, \ Cy,+1). Therefore we get that

6(p) —lim6(q,) = P (Q €C,\ Ucn>

Suppose0 € C,,0 € |JC,,. Since C,, C C, there exists path P in C, with edgesey, ea, . . . €.
n
Since P C (), we see thatU,,, ..., U, <p.

77777

limiits, we see thatp > lim ¢, = p.
n—oo
{0e C,\UC,,} C{Jest.U.=p}
P(Je € E(ZY);U. =p) < >.P(U. =p) =>.0=0. So therefore,d(p) — lim6(g,,) = 0.

Two events A, B C {0, 1}".

AOB = A& B hold for ”disjoint reasons”.

AOB = {x = (x1,...,2,) € {0,1}™; 3disjoint I,J C {1,...,n}st.1; € A1, €
B&x Z 1[,3?' Z 1J}

BK inequality:

P(AOB) < P(A)P(B)if A, B are up-sets.
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Lecture 9

Theorem (BK)
For alln € N,0 < p < 1with A, B C {0, 1}" up-sets, then

P,(ADB) < P,(A)P,(B) (9.1)

Proof:

Induction onn. Forn =1, the only upsets are {1}, {0, 1} so there is nothing to show.
We assume that (9.1) holds for all A, B C {0, 1}.

Let A, B C {0,1}" be arbitrary upsets. Define C' := ACB. Let

A; ={(z1,...,2,-1) € (0, 1)” st (wy,..., 0, 1,1) € A}
Ci={(z1,...,2n-1) € (0,1)" 's.t. (21,...,201,1) € C}
B, :={(x1,...,x,1) € (0,1)" 's.t. (21,...,2,_1,7) € B}

Note A;, B;, C; are up-sets since A, B upsets.
Furthermore Cy = AydBy, and

C, = (A0B;) U (A,0By) (9.2)

Since we want disjoint, we want that the nth edge is not simoltenously used for A, B,
so therefore we can not have A;[1B,. Ay C Ay, By C Bj since they are upsets.
Using this we can conclude that

Co C (AyOBy) N (A, OBy) (9.3)

. This is since (AgdB;) D AgOBysim. for (A;0By). We also have C; C A;00B;.
Note that Ag, A1, By, By, Co, C are of dimensionn — 1so we can use ITH.

P(Cy) = P(AoIBy) Ig P(Ao)P(Bo)
P(Cy)

P(A,0By) Iél P(A,)P(By)
1(9:3

—~
©

2

~

< P(4,0B
L P(A,OB;) + P

~—

N (A10By)) + P ((Ao0By) U (A:0By))
A1DBO)

—~

I/\E

P(Ao)P(B1) + P(A1)P(By)
(1 =p)P(Co) + pP(Ch)
= (1= p)’P(Cy) + pP(C1) + p(1 — p) (P(Co) + P(CY))
(1 = p)"P(Ag)P(Bo) + pP(A1)P(Br)
—p)P(A9)P(B1) + p(1 — p)P(A1)P(B1)
(Ao)
)

P(C) =
P
P

2

—l—l/\

p(1—p)
(1 =p)P(Ao) + pP(A1)) (1 = p)P(Bo) + pP(B1)) = P(A)P(B)
9.1 follows fromP(F U F) =P(E)+P(F) —P(ENF).
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Exponential decay in subcritical regime

SUBCRITICAL REGIME: p < p,.

On(p) =P, (0 «~ OA,,).
EDGE BOUNDARY set S defined by 0g(S) := {(u,v) : e = uwv € E(Z%);u € S,v ¢ S}.
ForO0<p<1:¢(S,p):=p- >, Pp(Qewgu).
(u,v)€0E(S)
Note that ¢(S,p) = 0if0 £ S.
Lemma:
If there is finite S C Z?with0 € Sand ¢(S,p) < 1. Then there is a
c=c(p,d) > 0s.t.0,(p) < e ", Vn.
Proof:
Let Sbe as above. and Lbe s.t..5 C A /i99. Fork > 2

Orr(p) < Z IP,(Fopen path from 0 to A& P leaves S for the first time at zy)
(#,y)€0E(S)

< Z P,({0 o z}H{y e~ OAgL }O{xy open}
(z,y)€dr(S)
BK

S Y B0 a)By(y ew Ohi) - p
Ifx € S C Apjipoandzy € E(Z%) theny € Ay 1. Thus

Py(y e OAgr) < Py o A(k—1)LIy)
= Pp(Q o A(kfl)L)

Plugging back in

s
OrL(p) < E IEDp(Q Aot x)]P’p(Q o A(k—l)L)p
(z,9)€0E(S)

= gb(S, p)g(k—l)L(p)

If we iterate this we get

Orr(p) < (8(S,p))*

e n=FkL, then
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e n > 2Lthen
O,(p) <O - {EJ (p) <e . L%J < e B

This follows from L - L%J > L (% — 1) =n—L2>3.

Claim: We are done, by setting. by ¢(p, d) = ¢ = min

.....
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Lecture 10

Lemma:
Vp € (0,1) we have ©/,(p) = mEpgb(T,p) whereT :={z € A, : z ¥~ O\, }.
Proof:

', (p) Ay Z P, (e pivotal for 0 e~ OA,)

= — Z P, (e closed and pivotal for Q e~ OA,,)
EGE(An)

=—— ) Py(0ew a,y o 9N, 0 ¢ OA,)

z,yEAn
2yEE(An)

:%p S Y P a&T = S)

SCAp (z,9)€0E(S
et (z,9)€0R(S)

=Y Y BOUSoR(T-5)

SCA, (2,9)€05(S
et (z,y)€0r(S)

1« ¢(S,p)
1=, Z P,(T = 5)

SCA, p
0es
L Ee(T.p)
=~ y P
p(l—p) "

Note that ¢(5,p) = 00f0 & S.

Aizenmann Barsky Menschikov Theorem:

In every dimensiond > 2, for everyp < p.(Z%)there is a constantc = ¢(p,d) > 0,
5.t. P, (0 «~s OA,) < e

Proof:

Set p. :=sup{p € [0,1],3,5 < 00,0 € S&o(s,p) < 1}

by last Lemma Lecture 9, Vp < p., 3¢ > 0s.t O, (p) < e "¢, Vn.

To show: p. > pe, since then lemma L9 holdsVp < p.. Suffices to show O(p) > 0 for
allp > p.. Assume that ©(p) = Ofor allp > p.. Then it also holds that ©(q) =
Oforqg < p. Letp. < g < pbe arbitrary. By def. it holds that¢(s,q) > 1for
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all S C A, containing 0. By second lemma

1

1
O (q) = E,¢(T,q) > ——E,1per = ——P, (0T
@ = =gt a) 2 g gy ateer = g0 € 1)
1
= ——(1-6,(q
TR
Since subcritical we see that0 = lim ©,(p). There is angs.t,0,(p) < %,Vn > ny.

n—oo
S00,(q) < 3if¢ < pandn > ny.
Then forn > ngif we integrate below, we get

p

0(0) > 0070 + [ (1=, ()ds > [ —iomsdg = Sl

Pc Pc

If we take limit n — oo on both sides, we see that

p_p~c
0> ——
2p(1_pc)

Which is a contradiction. So©(p) pfor allp > p.soO(p) > 0for allp > p,.

>0

Corollary (on proof):

For everyd > 2, there is ac = ¢(d) > 0s.t.O(p) > ¢(p — p.) for allp > p..
Proof:

Exercise

Corollary on corollary:
©is not differentiable at p = p..

Theorem Russo

Dimensiond = 2,p — ©O(p)is diff. on(0,1) \ {p.}-

Proof:

R :=sup{n : O «~ 0A, } which is radius of the cluster of the origin.

n
C :=|{z € C?: 0 e z}|is volume/size of the cluster of the origin.
LATTICE ANIMAL connected subgraph of Z? that contains the origin.

Forp < p. we see that O(p)’ = 0so letp > p.. O(p) =1— > P,(c =n). So
n=1

0'(p) = — [Z Py(c = n)]
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Let ay, m » be the number of lattice animals with n vertices, medges and r edges that
have to be closed in order to form this lattice animal. With this, we can write

P(c=n) = Z Z AP (1 —p)"
m>0 r>0

Note that sincenis fixed, we havem,r 4 oo. So finite sum hence we can calculate
derivative. Note that ay, ,, »is a number so independent of p. Therefore

d
d—IP’(c =n)= Z Z A (MP™ (1 = )" —rp™(1 —p)" 1)
p m>0 n>0
m T m r
= Zzan,m,rp (]- _p) <E - 1 _p)
m>0 r>0

Ford = 2, we see that m,r < 4n. Therefore

d 4n
—P(e=n S — T~ an,m,rpm 1_p "
dp ( ) p(1—p) W;O S
4n
=—Plec=n
p(1—p) ( )

Fixp, < a < < 1. Then for alla < p < 3, sop € («, 3), then

‘iP(c:n) <

4 /
n o=V
dp

a(l —p)

(Follows from exercise 4.ii). Then sinced = 2,Vp € (a, f)

d 4 ,
- —c(a)+/n
E —dpPp(c =n)| < —a(l ey E ne

m>n n>m

So ifm — ocowe see that this will go to zero,by reminder theorem hence we see
that di@(p) exists forp > p..
p

Reminder theorem. If fi, fo,...are a sequence of diff functions, ,then the derivative

of i fnexists and 2 (i fn(x)> = i f(x)ifVe > 0,3Imy = my(e) s.t.

n=1

> )

m>mg

< e Vy e [withx € [ open interval
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Lecture 11

C:={2€Z%: 0w z}and R := sup{n : 0 «~ A, }
P(R>n) <e ifp < p..and P(H(R))SEE LECTURE NOTES

C = |C|thenP(C > n) < e~*" wherep < p..
Exercise:
Show: 3¢ > 0;P(C' > n) > e~°™.

Exponential decay of volume

Vp < pe,de =c(p) : P(C > n) < e

Proof:

V(Gy) = k-Z% Denote zw € E(Gy) & (Z 4+ Agi) N(w+ Agg) # 0 & ||z — w0 < 4k.
So in 2 dimensions this is from —4k to 4k (so 9 points), and from —4k to4k. Similair
in other direction, multiply those, remove origin (since counted twice). Only depend
ondnot onk.

Note that by reasoning 2 lines above, we see that D = deg(Gy) = 9% — 1does not
depend on k, only ond!

Note if 0 & Agp and C N (2 + Ag) # 0, then z is good.

n—| Aokl
Akl -

If C' > nthen Janimal A in Gy,of size at mostm :=

P(C > n) < P(Janimal in Gy, of size m)

< Z P(all points of A good)
AcAm

< P(Ag o OAgy)*
A

<Y P(Ag e OAgy) DT
A

< (2k + 1)k E22

Choose ks.t. P(Ay e OAg;,) < 7127 P+

m D
P(C > n) < 2P (e~lo-DD+D)PHT _ (l) T oDmg-Dm _ -

e
Now use thatm = nT/L?jk‘
Exercise:
: 1
Complete the argument: show that ¢ > 0s.t. g77ym > en.

1A 2023-2024 (S4349113) Page 38



Percolation Theory, University of Groningen H.M. (Lenie) Goossens

Exercise

Ghasdeg < d,v € V(G)thena, := #connvected subgraphs containing v then a,, <
2bn,

a(G) :=max{|S]: S CV(G)&uv ¢ E(G),Yu,v € S}

Exercise

(@) > 112

Let B = {CLl,. .. ,bl}X{ad,. .. ,bd}WlthH(B) = {(J,l}X{(lz, e ,bQ}X. . .x{ad, Ce ,bd} PV]?/‘)
{bl} X {ag,...,bg} X ... X {ad,...,bd}.

New characterisation p,.

Exercise:

Show k th root trick:

Ay, ..., A, are up-sets, thenmaxP(A;) > 1 — {L/l —-P(AU...UA,)

Theorem:

o Ifp < p.thenP(H(A,)) =50

n—oo

e Ifp > p.thenP(H(A,)) — 1
Proof?’
1.

P(H(A,)) < (2n+ 1)%e~" 2% 0

2. Epn={Vz,w e Ap:zem wiffz%l}withk < n.

1

n—oQ

For any k,P(Ey,) — 1.
dng = no(k)s.t.P(Ex,) — €,Yn > ng. Note that A, has2dfacets. There-

fore H(A,) = f &, fo.
An 2d
Fini={3z € Ap: 2 e 00&z e~ f;} therefore | Fypni = {Ag e 00}
i=1
Can Choose ks.t. P({Ag e~ 00}) > 1 — 0.
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By square root trick, we see that P(F}, ,, 1) = max(P(Fin,))
=1— 3/(1=P(Fep1U...UFyn2) > 1—2dV3 > 1 — eby choice of 4.

Consider Fy 1 N Fipno N By, € H(A,) UUC.
Where U = {Jlinfinite cluster}.Therefore

P(H(An)) > P(Fena N Fina N Epy) — P(U°) > 1 — 3¢

P(U¢) = 0by Second last theorem page 30.
takee N\, 0.

critical probability in dimension 2

]P’%(H({l,...,m—i- 1} x{1,...,m}) = 1.

P(H(A,)) =P(H({1,...,2n+1}?)) > P(H({1,...,2n+2} x{1,...,2n+1}) = 1 /4 0.
Therefore p. < %

T=...> ]P’%(H({l,...,Qn—i— 1}%))- 2 =P(H(A,)) - 2.
Status of "these” edges indep. of event H(A,). Therefore we see that if we have a
horizontal crossing in2n x 2n + 1 box, then there is a possibility we end in a corner.
Then we have a probability of 2 to pass the entire box. (namely 5 + 3)
P(H{1,....2n+2} x {1,....2n+2}) > P(H(A)) - (5 + 3)-

SoP(H(A,)) /> 1since s # 2. Sop. > 3.
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Lecture 12

T triangular lattice integer linear combination ofv; = (1,0) and vy = (0.5,0.5v/3).
H dual honeycomb lattice. Tutorial: Show that this is indeed a lattice.
Tutorial:

1. InTor H at most one infinite cluster (when p < p.(7"))
2. By(0 oo T\ [, ) < e~ with p < po(H) and (07 «w H\[~1,n]?) < =",

3. R, = {ivi+jve;i,j € {1,...,n}}, H(R,) horizontal crossing, H(R,,)inT or V(R,) in H under

standard coupling.

For T& H
0ifp < pe
By(H(R,)) ~ {1.
ifp > pe
Corollary:
pe(T) +p.(H) = 1.
Proof:

— B,(H(R,)inT) +P,_,(V(R,)in H)
(H(R,)InT)+P_,(H(R,)inH)

Pickp > p.(T), thereforeP,(H(R,)inT) — 1, andPy_,(H(R,)inV) — 0. There-
fore 1 —p < pe(H), s01 — pe(T) < pe(H).

Pickp < p.(T),therefore P,(H(R,)inT) — OandP,_,(H(R,)in H) - 1. Sol —p >
pc(H) sol _pc<T) > pc( )

So we havep.(H) < 1 — p.(T) < p.(H)and thereforep.(H) = 1 — p.(T)sop.(H) +
pe(T) = 1.

A — y TRANSFORMATION

SEE NOTES. For percolation, matters how the triangles, resp Y, connectsx, y, z.
Partition A Y

{z,y,2} p*+ 3p*(1 —p) (1—p)3

H{(z,9)} {2}} p(1—p)° (1—p)?p
H{(z, 2)}, {y}} p(1—p)° (1—p)?p
H(y, 2)}, {=}} p(1—p)? (1 —p)°p

{{z} {v}, {=}} (1-p)? P’ +3(1 - p)p?
If A =Y, then A — Y transformation does not change P(percolation), observe that we
only need to hold therefore that p® + 3p*(1 — p) = (1 — p)*.
Claim: this means that p? — 3p +1 = 0.
Exercise:
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1. Unique solution in [0, 1]isp = 2sin(7w/18).

2. sin(7/18) = /2 — V2 + ...

Applying A—Y transformation to all upward triangles in T, we get a coupling of T" (with p),
and H (with 1 — p). Note that we have shifted H.

Exercise:
P,(H(R,)inT) >Py_,(H(R,)inH)>P,(H(R,)InT) - (1—p).

Result about exact value p. by Wierman 1981

Supposep := 2sin(m/8) > p.(T'), thereforeP,(H(R,)inT) — 1by an exercise we
show thatP;_,(H(R,)inH) 4 0sol —p > p.but this means thatl =p+1—p >
pe(T) + p.(H) = 1, which is a contradiction.

Supposep < p.(T), soP,(H(R,)inT) — 0soPy_,(H(R,)in H) /4 1, therefore 1 —p <
pe(H)so=p+ (1 —p) <pT)+ p.(H) = 1. which is a contradiction.

Therefore we get p = p.(T") sop.(T) = 2sin(r/18) and p.(H) = 1 — 2sin(7/18).
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Lecture 13

GALTON-WATSON TREES

Need to show:Ve, Idy = do(€) s.t.p = L, d > dy then P(Qis in oo open cluster) > 0

x = Fchildren, x,, = 0. Note that # children of each indiv. are iid NV X, X5, ... 4

X. If we assume a birth under natural (unrespondence iwth iid seq.) 1, z2, z3. What
isP(tree dies out) so tree is ifnite.

Theorem:

If0 < P(X = 0) < 1thenP(extinction) = 1iff E[X] < 1.

Proof: Stochastic processes.

Exploration procedure: Find children of root-continue process previously unprocessed
mode (add its children) (stop if none such exists so T finite.) So# new individuals in

each step 2 and independent of past.

K-ARRAY TREE: every node has k children. So root has degree k and anyone else has
degree k + 1. (Has to be oo large). Notation: Tj.

Exercise:

Show that p.(T}) = 5.

3-REGULAR TREE: every node has degree 3.

Exercise:

N = #ooclusters. Show that P(N = 00) = 1ifp. < p < 1onTy.

STOCHASTIC DOMINATION:

X > YitP(X > 2) > P(Y > z),Vz € R.

Exercise:

Bi(n,p) > Bi(m, q)ifn > m,p > q.

X ~ Be(p),Y ~ Be(y), thenP(X >0)—P(y > 0) = lLandP(x > 1) =p>q > Py >
1).

COUPLING of X, Y'is probability space/random vector (X', Y')s.t. X’ 4 X, Y’ Ly,
Exercise X, Y ~ Be(1/2).

Simple case of Strassew’s theorem:
x, yinteger valued, X > Y then Jcoupling (X', Y")st.P(X' > Y') = 1.
st

Proof:

Exercise
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X, = Bi(n,min(1, ¢/n)) then asn — oothen X,, ~ Poi(c)soP(X = k) = Se°.
Exercise:
Show that Ing = ng(c),ys.t. X, > Y,Vn > npand E[Y] > 1.

ST

Exercise X > Y with T offspring distribution X, and S offspring distribution Y (offspring
ST

= nakomelingen) then || > |5
ST

Exercise X, 4 Bi(n, p,) for some sequence (p,),, and T,, galton-watson offspring distri-
ubtion X,,, thenliminf F(X,,) > 1 = liminf P)(7,, = c0) > 0.

Lemma:
Ve,ANs.t.VM,3dy = do(e", N, M)s.t. ifd > do,p > 5 vz, 2y € Z%distinct
then P(.EIllaXN|C<Zi>’ < m) < n, whereC(z;)is open clusters of z;.

Idea: Embeded G.W. Tree: LetT; C C(z;). Want them to behave like indep. GW
trees. Want:

P(|Tyl,...,|Tn| < M) = P(|Ty| < m)™ (L13.1)

Define exploration procedure start from z, (first vertex of 77)and open neighbours
of Z1.

So at each step we pick unprocessed point of T} and add neighbours not yet in 7} that
are distinct from 2o, . .., z)y. Here we still assume |T7| < m. At each step # neighbours
we can add at least 2d — (m — 1) — (N — 1). Note that # neighboursszT Bi(...,p).

If we fail to build of size > m, restart building 75 from z3. At each step we ask for
neighbours not in7}, Ty so far and z3, ..., 2y. Therefore noumber of possible neigh-
bours we can add2d — 2(M — 1) — (N — 2). Continue like this until7y. When
building 7; number of possible Neighbours is at least 2d — NM > [(1 —0) - 2d]| =: n.
We see that for T; the number of possible neighbours you can add is at least 2d —i(m —
1)—(N—i) so if you want that it works for all i, you pick the larges, soi = N. Therefore
we see that the number of possilbe neighbours you can add is at least 2d — N (m—1) =
2d — Nm + N. Note that you can also add therefore 2d — N M, with which he works.

Minor change to procedure at each step chose exactly n potential neighbours, quiz
only them. Now at all steps #{new points} X = Bi(n, p).

P(|T1| < m). IfTis GW tree with distance X, then P(|T}| < m) = P(|T| < m).

Some inequalityTherefore we get P(|Ty|,...,|T,] < m) = P(|T] < m)” < P(|T| <
o).

By choice of §, we can have (1 —0)(1+¢€) > 1soE[X]=n-p> (1—-6)-2d-(1+¢€) > 1.
So by exercises 3¢ = ¢(€,d) not on, ds.t.P(|7] = o0) > c.
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Implementing above, we getP(|T}|,...,|T,] < m) < (1 — ¢)¥ < n—by choice
of N = N(e,n).

P(max|C(z;)| > m) > P(max|T;| > m) > 1—n.

Note that this finishes the proof, since P(max|C(z;)| < m) = 1 —P(max|C(z;)| > m) <

1—(1—n)=n.
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Lecture 14

N s.t. Vm Jddps.t.d > dyandp > (1 +¢€)/2dthenP(C(z1),...,C(z,) <m) <€

Here C(Z) = |[{w € Z* : z &~ w}|. Forptakep = 0.99.

Main 1dea for Kesten’s proof of GKHS. Coupling with 2d site percolation. Fixe, j and
def.m := |dd] and 7 : Z% — Z2s.t. (w1, ..., 24) = (1 + ... + Tony Tons 1, - -+, Tom)
Fix "9 ... (0 0 e 771(0,0), all distinct. c(z, 4) = ‘{w € Alz N w}‘

We say (0, O) is open if
1. one ofC’(zZ-(O’O)ﬂF1 0,0)) > M

(
2. Y(x,y) € {(—1,0),(0,—1),(1,0), (0, 1)} exists at least N points in 7~ (x, y) connected
toUC (2" 771(0, 0)) via an open edge.

Expolartion procedure:

e Process a node (z,y), adjecent to node which is open (previously determined).
We do not process a node more than once. Until we no longer?

e We can fix ng,y)’ . ,z](é‘“’y) s.t. connected to {Z§o,0)’ . z](\?’o)} via open paths

(inZ%) that project onto open sites of Z<.
Therefore we say (x,y) is open if
1. one ofC’(zl-(w’y),Wfl(x,y)) > M

2. Y(z,y) € {(z — 1L,y),(x,y — 1), (z + 1,y), (x,y + 1)} exists at least N points

in 71 (z, y) connected toUC (2", 7=1(x,y)) via an open edge.

Want to show: N, M chosen well, P(Percolates) > 0sod— dimensional percolation.
Enough to show: at each iteration,P(current open|past) > p > p.(Z?, site)
Since this shows:
P(in our 2d model percolation) > P (( ) «~ ooin stand. site perc. model) > 0.
When we process (z, y) ,no edges inm = (z,y )have been "Revealed”.
Note 7=1(0,0) ~ Z4=2™_ SoP(one of (C(z\"?, 771(0,0))) for some i has at least sizem) >
1—e€
Assume 2(d — 2m)p > 1 + €' by previous lemma. Therefore

2(d —2[6d]) %< > (1 —26)(1 + €) > 1+ § by choosing § appropriate. 7
If (z,y) # (0,0)then7!(x,y)is disjoint union of copies of Z~>™ namely Ty, ..., ;.
Suppose 21, ...,2; € M1, 2, ... 2y € I and C(2,1'1) and C'(2,, ') indepedent.

P(each of zy, ..., zy has < M points in cluster of 7~ *(x,y))
P(each of z1,..., 21, < MinI'y) x ... x P(each of z;, ,,...,2y < MinTk)

>
>(1—c)t .. (1—c)N i

1A 2023-2024 (S4349113) Page 46



Percolation Theory, University of Groningen H.M. (Lenie) Goossens

¢ > 0approx GW surv. prob. Here (1 — ¢)" < e. (So this is the probability that the
node is not good, and we want the complement.

Also want:

Lemma:

wy, ..., wy € 7 Yx,y). Plwy,...,wy have at least Nnbs in7m!(z + 1,y)) > 1 —e.
For M chosen approp. (M = M(N,e¢)).

For eachwy, . . ., wy exists m potentail neighbours in 7= (z+1, y) then #relevant edgese(A, B) =
M x mwhere A = {wy,...,wy}and B=7"1(z 4+ 1,Y) then X = < Bi(M x m, p)
E[X]=Mmp=M - [§d] x &> M‘s(HE) which we make large by choosing M.

Var(X) = Mmp(1 —p) < EX So

IP(XH< By <P(|X —EX|>EX) < (VE;](/Q)) < (?:[[;(}]2 < €/1000 which we can make

sma

SoP(X > 1000N) > 1 — ¢/1000

Y := #{points in 7" 1(X + 1,Y) connected to at least 2ofwy, ..., wy}.
EY < (¥) x m x p? here p* since we need 2 edges to be open.

ThereforeEY < M? x d - 1;;;2 420 0. ThereforeP(Y > 1) <EY < -

SoP(Jast least 100N diff. nbs) > 1 — =&
Therefore P((x, y) pen) = 1 — {condition 1} — {condition 2} +1 —€—4- == > .99.

SlabZ? x {1,...,n}¢"? = S, n-th slab.
Pe(Sn) > pe(Z?). Show lim p.(S,) = p.(Z?).
n—o0
0(p.) = 0ford = 2ord > 11. Tassion sibovicius(p,, S,) = 0, Vn.
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Lecture 15

Grimmett Marstrand theorem:

Vpwe havep.(Z?) = lim p.(Z* x {1,...,n}).

P = pe + ethen existgﬁxg..t. Z? x {1,...,n} percolation.
d=3,n>m>1thenPyi(Ay &5 A,) > 1 — .

Ppc-l-e(An ‘é"% Q) >1—e

nth root trick Ay, ..., A, upsets, thenmaxP(4;) > 1 — {/P(A; U A,)

Let A; = {An &% Q;}soP(4;) > 1— /1—PUA) = 1 — 2{‘/1 — P(A, &% OA,).
€ = Ve

P(#v e G: Ay, o5 v>K)>1—¢€"

Suppose P(#v € G : A, Eovy > K) >> €”’, then by HarrisP(#v € 0A,, : A, &
v < 24k) > (7)*

Let A = {#v € O, : Ay, &% v} then P(A,,, s DA, 41) > P(A) - (1 — p)2#2. So

€5 > P(A, o Ay) > (€)% (1 — p)™*

”/

Which can give a contradiction by choices of €”’, €5 by right choice of m, n.

therefore P(#v € @ : Ay, &y < K) < ¢ therefore P(#v € Q : Ay, &y > K) >
1—e

SEED copy of A,,, with all edges open.
P(E={FveqQ:A, &z v,v(v + ep)open, (v+e1) +{0,...,2m}3seed)} > 1 — €.
IfF:{#veQ:Ami\A%UZk}thenM:( i

2m—+1)2
Can choose potential seed disjoint K large = M large. P(E|F) > 1—(1—p't@m+D)?ym >
1 — €6 by choice of k.
AND THEN HE WENT UP TILL WITH SUCH A REASONING TILL ¢, AND
NO IDEA WHAT HE DID
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